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Dynamical and Thermodynamical 
Influences of the Maritime 
Continent on ENSO Evolution
Tuantuan Zhang1, Bohua Huang2, Song Yang1,3,4, Junwen Chen1 & Xingwen Jiang5

El Niño-Southern Oscillation (ENSO) exerts tremendous influences on the global climate. Through 
dynamic lifting and thermal forcing, the Maritime Continent (MC) plays an important role in affecting 
global atmospheric circulation. In spite of the extensive studies on ENSO mechanisms, the influence 
of MC on the characteristics of ENSO life cycle remains unclear. Our coupled model experiments reveal 
that the absence of the MC land contributes to a strong ENSO asymmetry and a weakened nonlinear 
atmospheric response to the combined seasonal and interannual SST variations (i.e. the combination 
mode) that prolongs the warm events, resulting in a reduction of ENSO frequency. On the other hand, 
our experiments suggest that the global climate model applied (NCAR CESM) overestimates the MC 
topographic uplifting effect on ENSO simulation. Overall, this study provides a new physical insight into 
the nature of the MC influence on ENSO evolution.

El Niño-Southern Oscillation (ENSO) is a major driver for global interannual climate variability1,2. It exerts 
worldwide impacts on human life and economic growth through modulating crop yields3, drought and flood 
hazards4,5, heat waves and cold surge6, tropical cyclones7, and ice melting in polar regions8,9. Understanding, 
simulation, and prediction of ENSO have attracted tremendous interests around the world over past few decades. 
Among many challenges, the future change of ENSO in a warming climate is thought to be at the heart of global 
climate change research10,11.

The warm (El Niño) or cold (La Niña) episodes of ENSO occur every 2–7 years12. These events typically follow 
a similar life cycle, initiating in boreal spring, developing during boreal summer and fall, peaking in boreal winter, 
and decaying from the subsequent spring to early summer13,14. Physically, a fast ENSO growth is associated with 
a coupled positive feedback among the zonal sea surface temperature (SST) gradient, surface zonal wind, and the 
zonal slope of thermocline depth over the equatorial Pacific, characterized by a zonal shift of the Walker circula-
tion15. On the other hand, delayed negative feedback mechanisms, such as the delayed action oscillator16 and the 
meridional discharge-recharge process17,18, generate phase transitions in a sustained ENSO cycle. Other physical 
processes further account for ENSO’s phase locking with the annual cycle19 as well as the quick termination of an 
ENSO event after its peaking phase20,21.

Oceanographically, the Maritime Continent (MC) and its associated island chains form the western bound-
ary of the Pacific, which, among other things, allows the reflection of the incoming oceanic Rossby waves into 
eastward propagating equatorial Kelvin waves, a crucial process of the ENSO delayed oscillator16. The Indonesian 
Throughflow also transports warm and fresh Pacific water into the Indian Ocean22. Meteorologically, atmospheric 
deep convection over the western Pacific warm pool, which fuels the ascending branches of both the Walker cell 
and the meridional cell, has its core anchored around the MC23. During the ENSO warm episode, convection 
is depressed over the MC and enhanced near the dateline, accompanying an eastward shift of the Walker cir-
culation, while the features are opposite during the cold episode24,25. Previous studies have suggested that the 
interannual climate variation over the MC is significantly modulated by ENSO26–29. However, as a major tropical 
heat source located between the Indian Ocean and the western Pacific, the MC plays a critical role in bridging 
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the global atmospheric circulations, including forming the ascending branches of the meridional cell and Walker 
cell23, suggesting that the MC may be not only a respondent but also a driver. Despite that much effort has been 
devoted to this fascinating place over the recent decades23,30,31, how the MC influences the characteristics of the 
ENSO cycle remains far from understanding.

Consisting of multiple islands in Southeast Asia with complex topographies, the MC affects the atmospheric 
circulation through its topographic dynamic lifting and land surface thermal properties that are distinctive to 
those over the surrounding oceans. To examine the MC influences as both a dynamical and a thermal forc-
ing on the characteristics of ENSO life cycle, we perform three coupled numerical experiments from 1979 to 
2005 using the Community Earth System Model (CESM, see Methods for details). The first experiment uses the 
U.S. Geological Survey (USGS) 30-second elevation over the globe (referred to as CTL, Supplementary Fig. 1a), 
while the elevation is reduced to zero over the MC in the second experiment, to highlight the topographic effect 
which is dominated by dynamical lifting (referred to as NOTOPO, Supplementary Fig. 1b). Finally, to show the 
combined effect of MC topography and thermal forcing, the land surface over the MC is replaced by a layer of 
seawater of 10-meter depth in the third experiment (referred to as NOLAND). The 10-meter depth is only the 
thickness of the OGCM first layer and does not generate any meaningful transport through it. Therefore, it does 
not change the large-scale ocean circulation including the differences of sea surface temperature and salinity 
between the Western Pacific and Indian Ocean. However, the change of the surface property from landmass to 
seawater is sufficient for atmosphere-ocean interaction to take effect. We focus on the period from 1983 to the 
end of the simulations.

Results
Changes in frequency band and life cycle of ENSO. The first combined empirical orthogonal function 
(CEOF) mode of the observed 925-hPa wind within the tropical Indo-Pacific domain accounts for 12.9% of the 
total variance. This dominant pattern of surface wind variability is characterized by opposite zonal wind anoma-
lies over the equatorial western-central Pacific and the equatorial Indian Ocean (i.e. Walker circulation anomalies, 
Fig. 1a). A pair of anomalous cyclonic/anticyclone circulation is situated over each side of the anomalous wind 
over the equatorial Pacific (Fig. 1a). This spatial pattern apparently represents the atmospheric anomalies associ-
ated with ENSO. Its corresponding principal component (PC1 hereafter) is highly correlated with Niño-3.4 index 
(SST anomalies over 5°S–5°N, 120°W–170°W), with a correlation coefficient of 0.84.

The major features of the observed CEOF mode are generally captured by the CESM (Fig. 1a,c), giving con-
fidence in exploring the role of MC in ENSO life cycle through additional model experiments. The NOTOPO 
(Fig. 1e) and NOLAND (Fig. 1g) experiments reveal similar spatial patterns to those of the CTL experiment 
(Fig. 1c). A low-frequency fluctuation about 3–4 years is shown in the PC1 of the CTL experiment (Fig. 1d), in 
the time scale of the observed ENSO interannual variability12,32. The correlation coefficient between Niño-3.4 
index and the PC1 in the CTL experiment is 0.83, suggesting that the PC1 well captures ENSO activity in the CTL 
experiment. The model ENSO cycle tends to be quite regular (Fig. 1d). No significant change in ENSO interan-
nual variability is found when the MC topography is removed (Fig. 1f). However, the frequency and strength of 
ENSO are reduced when the thermal property of the MC surface is further changed from land to water (Fig. 1h). 
These features of NOLAND are confirmed by the power spectrum of the PC1s (blue curve, supplementary 
Fig. 2a) in comparison to those from the other two experiments (red and orange curves, Supplementary Fig. 2a). 
The power spectrum of the Niño-3.4 index reinforces the result in Supplementary Figs 2 and 3. Visually, El Niño 
events decay rapidly after their peaks in both CTL (Fig. 1d) and NOTOPO (Fig. 1f) experiments, which are simi-
lar to the observed major events in 1983, 1992, and 1998 (Fig. 1b). However, the decaying process seems slower in 
the NOLAND El Niño events (Fig. 1h), which may contribute to its lower frequency of ENSO cycle.

The second CEOF mode from observations, which explains 9.9% of total variance, is characterized by an 
anomalous anticyclonic circulation over the western North Pacific (WNP) and anomalous westerlies to the south 
of the equator over the central Pacific (Fig. 2a). These anomalies are particularly strong in the maturing season of 
major El Niño events in the boreal spring of 1983 and 1998 when the positive values of the corresponding time 
series (PC2 hereafter) are large (Fig. 2b). This pattern of low-level wind anomaly features the combination mode 
(C-mode) generated by the nonlinear interaction between the warm pool annual cycle and the ENSO interan-
nual variability20,33–35. The PC2 spectrum shows quasi-annual frequencies with two significant peaks around 15 
months and 9 months (Supplementary Fig. 2b; Stuecker et al.)20 as the combination tones in the C-mode. The 
two significant peaks are captured by both the CTL and NOTOPO experiments, although there are some over-
estimations (Fig. 2). However, the PC2 of the NOLAND experiment (Fig. 2h) does not show distinctive maxima 
as in the other two runs. Correspondingly, its power spectrum only shows a small peak of the combination mode 
frequency around 9 months (blue curve, Supplementary Fig. 2b). Since the C-mode is effective in generating the 
rapid termination of strong El Niño events, this result further confirms that the combined effect of MC topog-
raphy and thermal forcing plays an important role in affecting El Niño decaying process and modulating ENSO 
frequency.

To further substantiate the changes in ENSO life cycle, we compute the composite values for the El Niño and 
La Niña events from Year 0 to Year 1 (Fig. 3). The El Niño (La Niña) events are selected with 3-month running 
mean Niño-3.4 index exceeding 0.5 (−0.5) for 5 consecutive overlapping seasons. The curves are normalized by 
dividing each with its peak value (i.e. during the peak of El Nino or La Nina). The El Niño composite values for 
both CTL and NOLAND experiments peak in December of Year0 while the latter clearly shows a slower decay 
(Fig. 3a). On the other hand, the composite El Niño value for NOTOPO experiment peaks later. Considering 
that the NOTOPO event also initiates somewhat later than in CTL and NOLAND, its phase-locking character 
seems to be different from the other two. A similar shift in peaking time also occurs in the La Niña composite 
for NOTOPO experiment (Fig. 3b). It is inconclusive whether the ENSO decay in the NOTOPO experiment is 
clearly faster than that in the CTL experiment although its C-mode is stronger. A new finding from the composite 
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analysis is that the decays of the La Niña events are much slower in the NOLAND experiment compared to those 
in both CTL and NOTOPO experiments (Fig. 3b). Interestingly, the NOLAND La Niña decaying is much closer 
to the observations than the other two are. The strong ENSO asymmetry in the NOLAND experiment apparently 
contributes to the slower decay of the ENSO events, especially the cold events, and hence a lower frequency of 
ENSO cycle, in addition to the C-mode mechanism.

Physical influences of MC on ENSO decaying process. ENSO growth is generated by the positive 
ocean-atmosphere feedback in the equatorial Pacific (Bjerknes feedback), leading to persistent development of 
the equatorial anomalies and finally reaching its peak phase15. As shown in Supplementary Fig. 4, warm SST and 
surface wind anomalies over the tropical eastern-central Pacific cold tongue are largest five months before the 
ENSO peaks in the NOTOPO experiment but smallest in the NOLAND experiment, implying a faster growth and 
thus larger peak values in the former. Consistently, weakest (strongest) Bjerknes feedback occurs in the NOLAND 
(NOTOPO) experiment, which leads to the slowest (fastest) ENSO development (figure not shown). At the peak 
phase of El Niño, SST increases over the tropical eastern-central Pacific cold tongue and decreases over the west-
ern Pacific warm pool, with a reduced east-west SST gradient and weakened equatorial easterly wind, resulting 
in a slacken Walker circulation (Fig. 4a). In that stage, similar features are shown among the three experiments, 
except that the cold SST anomalies over the WNP region are more prominent in the NOTOPO experiment, 
demonstrating a stronger regional air-sea thermodynamic feedback in the western North Pacific, which strength-
ens the anomalous WNP anticyclonic circulation36 (WNP_AC). The positive (negative) SST anomalies over the 
tropical eastern-central Pacific cold tongue (WNP warm pool) decay during the subsequent months, while warm 
SST anomalies develop over the Indian Ocean (Fig. 4b). Correspondingly, the WNP-AC develops and persists 
into the post-ENSO summer, accompanied by a southward shift of low-level anomalous westerlies over the cen-
tral pacific as part of the C-mode (Fig. 4b). In fact, the positive SST anomalies decay slower in the NOLAND 
experiment compared to those in the CTL and NOTOPO experiments.

Figure 1. First combined EOF modes of 925-hPa wind, representing the ENSO mode. (left) Spatial pattern and 
(right) corresponding principal component (PC) for (a,b) NCEP CFSR, (c,d) CTL experiment, (e,f) NOTOPO 
experiment, and (g,h) NOLAND experiment, respectively. Shadings in the left panels represent the pattern of 
zonal wind. In the right panels, solid black lines denotes the corresponding PC1s, and dashed red lines denotes 
Niño-3.4 indices.
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Figure 2. Second combined EOF modes of 925-hPa wind, representing the combined mode. Same as Fig. 1, but 
for the second leading combination EOF modes.

Figure 3. Composite of El Niño and La Niña events. Composite patterns of 3-month running mean Niño-3.4 
SST anomalies in (a) El Niño and (b) La Niña events in observation (black line), CTL experiment (red line), 
NOTOPO experiment (orange line), and NOLAND experiment (blue line). El Niño (La Niña) events are 
defined as 3 month running mean of Niño-3.4 SST anomaly exceeding 0.5 (−0.5) for 5 consecutive overlapping 
seasons. The x-coordinate indicates corresponding months from ENSO Year 0 to Year 1. The curves are 
normalized by dividing each with its peak value.
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To further elucidate the role of MC in the ENSO decaying process, lagged correlations of sea level pressure 
(SLP) and 10 m wind with the PC2s are calculated (Fig. 5). In 4 months before the PC2 peak (4-month lead 
hereafter), the associated correlation patterns are largely asymmetric with respect to the equator, documented by 
the prominent positive SLP anomalies and a weak anomalous anticyclonic circulation over the WNP, with just a 
slight southward shift of anomalous westerlies (Fig. 5a). During the subsequent months, the anomalous WNP-AC 
continues to develop with a northeastward expansion, and the anomalous westerlies shift further southward to 
around 10°S (Fig. 5b,c). This typical C-mode dynamics modulates the equatorial heat content recharge/discharge 
process and generates eastward propagating upwelling Kelvin waves, allowing the thermocline to adjust toward a 
normal state in both western and eastern Pacific, thus favors the rapid termination of El Niño events20,37,38. On the 
other hand, the C-mode dynamics is less pronounced for La Niña as well as weak El Niño events, as in (refs19,20).

A delayed establishment and weaker anomalous of WNP-AC are presented in the CESM simulations com-
pared to those observed, with a quasi-symmetric anomalous pattern at 4-month lead, and the anomalous 
WNP-AC establishes until 2-month lead (Fig. 5d–f). The anomalous WNP-AC establishes at 4-month lead with 
a larger magnitude in the NOTOPO experiment compared to that in the CTL experiment (Fig. 5d–i), demon-
strating the C-mode features in the NOTOPO experiment are closer to those in observation and suggesting 
that the dynamical uplifting may be too strong in the coupled model. On the other hand, the establishment of 
the anomalous WNP-AC is further delayed (the establishment of WNP-AC occurs at later than 2-month lead) 
in the absence of MC dynamical forcing and thermal forcing, accompanied by a weaker southward anomalous 
wind shift (Fig. 5j–l). This feature signifies a weakened C-mode that prolongs the warm events and hence reduces 
ENSO frequency, supporting the analyses of the second CEOF mode as discussed previously.

Possible mechanisms responsible for the change in C-mode dynamics. The decaying process of a 
warm event is governed by the C-mode dynamics. In addition, cold SST anomalies preceding a peak of C-mode 
over the western tropical Pacific favor the occurrence and amplification of the further-westward WNP-AC 
as a Rossby wave response, which increases SST36,39 (Supplementary Fig. 5a–c). The CESM simulates weaker 
cold SST anomalies compared to those in the observation after 4-month lead, possibly explaining a weaker and 
delayed establishment of the anomalous WNP-AC in the model as a weaker air-sea feedback described by (ref.36) 
(Supplementary Fig. 5d–f). Eliminating the MC topographical effect brings the features of cold SST anomalies 
over the western tropical Pacific closer to observation and contributes to a more realistic simulation of the anom-
alous WNP-AC and hence the C-mode (Supplementary Fig. 5g–i). Besides, the excessive climatological ascending 
motion in the CESM simulations seems to generate extra cyclonic circulation in the lower atmosphere, which 

Figure 4. Ocean-atmosphere anomalies related to ENSO life cycle. Correlations of SST and 10 m wind with 
the first PCs for (left) lag 0-month and (right) lag 5-month from (a,b) NCEP CFSR, (c,d) CTL experiment, (e,f) 
NOTOPO experiment, and (g,h) NOLAND experiment, respectively. Significant values exceeding the 90% 
confidence level are shown.
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weakens the anticyclonic circulation associated with the seasonal westward extension of the subtropical high 
(Supplementary Fig. 6b). As a result, the seasonal evolution of climate in this region may not be conducive to trig-
gering the C-mode dynamics (Supplementary Fig. 6). Indeed, eliminating the MC topographical effect actually 
strengthens the subtropical high in November and leads to a more prominent WNP-AC (Supplementary Fig. 6).

Besides the cold SST anomalies over the western tropical Pacific, warm SST anomalies are observed over 
the MC region at 2-month lead (Supplementary Fig. 5a–c). Although these warm SST anomalies are well sim-
ulated in both CTL and NOTOPO experiments, it is absent in the NOLAND experiment until 0-month lead 
(Supplementary Fig. 5d–l). The establishment of the anomalous WNP-AC is also delayed in the NOLAND exper-
iment, compared to that in the CTL experiment. This result suggests that the thermal forcing of MC as land 
surface plays a critical role in the establishment of the anomalous WNP-AC and hence the C-mode dynamics.

Discussion and Concluding Remarks
Understanding the cause of ENSO seasonal synchronization is of central importance to ENSO prediction. 
However, we are still facing great challenges particularly in understanding the ENSO decaying process13,14,20. The 
physical mechanisms that governing the quick ENSO termination have been discussed in previous studies and 
they include the C-mode theory20 and the reversal of zonal heat transport dictated by oceanic dynamics21.

Results from coupled numerical model experiments show that an improved ENSO simulation in the C-mode 
dynamics is enhanced in the absence of the MC topographical effect, despite the unrealistic nature of the 
NOTOPO experiment. The overestimate ascending motion in the CTL experiment generates extra climatological 
cyclonic circulation in the lower atmosphere and weakens the seasonal westward extension of the subtropical 
high to trigger the C-mode dynamics, which is weaker and closer to that in observation in the NOTOPO experi-
ment. Additionally, the eliminating MC topographical effect produces a better simulation of cold SST anomalies 
over the western tropical Pacific, which also leads to a better representation of the C-mode dynamics. This result 
suggests an important role of cold SST anomalies in the development of anomalous WNP-AC, consistent with 
finding by (ref.36).

On the other hand, when the effects of MC topography and thermal forcing are both excluded, the model 
simulates a weakened C-mode dynamics that prolongs the warm events and results in a reduction of ENSO fre-
quency. In the NOLAND experiment, cold SST anomalies over the western tropical Pacific are well reproduced. 
However, the simulated MC warm SST anomalies are delayed by about 2-month compared to the observations 
and the other two experiments, which may contributes to the delayed establishment of anomalous WNP-AC 
(weakened C-mode dynamics), suggesting that the thermal forcing of MC as land surface plays a critical role in 
the establishment of the anomalous WNP-AC. This result suggests a negative and larger MC thermal forcing on 
ENSO evolution compared to the MC topographic effect.

It should be noted that the strong ENSO asymmetry in the NOLAND experiment also apparently contributes 
to the slower decay of its ENSO events, especially the cold events, and hence a lower frequency of ENSO cycle, 
in addition to the C-mode mechanism we have emphasized. The ENSO asymmetry, especially the long lingering 

Figure 5. ENSO decaying process. Correlations of SLP and 10 m wind with the second PCs for (left) lead 
4-month, (middle) lead 2-month, and (right) lag 0-month from (a–c) NCEP CFSR, (d–f) CTL experiment, 
(g–i) NOTOPO experiment, and (j–l) NOLAND experiment, respectively. Significant values exceeding the 90% 
confidence level are shown.
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La Niña events, has been examined in previous studies40–42. This asymmetry is usually underestimated in climate 
models (i.e. in the CTL and NOTOPO experiments). Although a detailed analysis on why our NOLAND exper-
iment better depicts this feature is beyond the scope of this paper, it should be an interesting topic for a future 
study.

In this study, our results emphasize the requirement for a better representation of the topography and hence 
the convective organization over MC, as mentioned by (ref.43). This study also demonstrates the strong physical 
influence of MC, particularly the MC thermal forcing, on ENSO evolution, which has never been explored previ-
ously. It provides a new insight into the understanding, simulation, and prediction of ENSO. Since the anomalous 
WNP-AC serves as a major mediator to bridge ENSO variability and the climate variation over East Asia36,44, 
the MC impact on anomalous WNP-AC evolution will further contributes to modification of the relationship 
between ENSO and the East Asia summer monsoon. Therefore, a better MC representation may also lead to 
improved prediction of the post-ENSO Asian summer monsoon and large-scale seasonal-interannual climate 
variability.

Methods
Reanalysis data sets. The monthly data sets of 925-hPa wind, 10-m wind, and SLP are obtained from the 
National Centers for Environmental Prediction Climate Forecast System Reanalysis45 (NCEP CFSR; https://rda.
ucar.edu/datasets/ds093.2) from 1983 to 2005, with a horizontal resolution at 0.5° × 0.5°. The monthly SST is 
obtained from the National Oceanic and Atmospheric Administration optimally interpolated SST analysis ver-
sion 246 (NOAA OISST V2; https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.html) from 1983 to 
2005, with a horizontal resolution at 1° × 1°.

Community Earth System Model (CESM) and experiments. To investigate the MC influences as 
both dynamical and thermal forcing on ENSO life cycle, we perform three coupled numerical experiments from 
1979 to 2005 using the Community Earth System Model (CESM) version 1.2.247. The CESM model consists of 
four components (atmosphere, ocean, land, and sea ice). The atmospheric model used here is the Community 
Atmosphere Model version 5 (CAM5) with a finite-volume dynamical core, a nominal 1° horizontal resolution 
(0.9° × 1.25°), and 30 vertical hybrid levels. The ocean model is the Parallel Ocean Program version 2 (POP2) 
with a nominal 1° horizontal resolution and 60 vertical levels. The land model is the Community Land Model 
version 4 (CLM4) with 15 vertical levels. The land and sea ice models share the same horizontal grids with the 
atmospheric and ocean models, respectively. The experiments use historical, observation-based external forcing 
data48 (e.g. solar irradiance, greenhouse gas concentrations, ozone, and volcanic aerosols). The first experiment 
uses the U.S. Geological Survey (USGS) 30-second elevation over the globe (referred to as CTL, Supplementary 
Fig. 1a), while the elevation is reduced to zero over the MC in the second experiment (referred to as NOTOPO, 
Supplementary Fig. 1b) and the land surface is replaced with ocean surface over the MC with initial conditions 
extrapolated from the surrounding oceans in the third experiment (referred to as NOLAND). The results from 
1983 to 2005 are analyzed.

Combined empirical orthogonal function analysis. The combined empirical orthogonal functions 
(CEOF) focus on the coupling between several variables in representing the dominant patterns of temporospa-
tial variability. To assess the representation of dominant atmospheric response related to ENSO variability and 
the combination mode in the model, a CEOF analysis has been performed on the 925-hPa wind over the trop-
ical Indo-Pacific (90°E–70°W, 30°S–30°N) using reanalysis data, CTL result, NOTOPO result, and NOLAND 
result, respectively. In other words, the 925-hPa zonal wind and meridional wind are analyzed together in a single 
empirical orthogonal function analysis, and thus the temporal variations [i.e. principal components (PCs)] by 
the eigenfunctions are common to both variables. The associated spatial pattern and corresponding time series 
for each mode, which are orthogonal to those of other modes, yield the amplitude and phase of the variations 
of monthly-mean 925-hPa wind. Each mode has a unique eigenvalue representing the percentage of variance 
explained by the specific mode.

Spectral analysis. We adopt a Tukey window size of 60 months from the Blackman-Tukey (BT) spectral 
method49,50 to calculate the power spectra of the observed and modeled PCs. The spectra are computed by taking 
the Fourier transform of the lagged autocovariance function, with a maximum of 60 lags and a ratio of taper equal 
to 0.1. The PC1 and PC2 wind spectra are tested on the 95% red noise confidence level.

Correlation and significance test. Values of correlation (r) above 0.12, 0.16, and 0.21 are used to estimate 
the 90%, 95%, and 99% confidence levels for a 23-year length of 1983–2005. Here, r is defined as
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where x  and y  are the mean of xi from i = 1 to i = m and yi from i = 1 to i = n (m and n are the sample sizes), s1
2 

and s2
2 are the variances, while m + n − 2 is the degree of freedom.

Code availability. The CESM version 1.2.2 code is available via the https://svn-ccsm-models.cgd.ucar.edu/
cesm1/release_tags/cesm1_2_2/.

Data Availability
All raw data can be accessed via the links provided above.
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